
J .  Fluid Mech. (1986). V O ~ .  165, p p .  147-16'2 

Pranted in Great Britain 

147 

On the influence of longitudinal diffusion in 
time-dependent convective-diffusive systems 

By H. K. KUIKEN 
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands 

(Received 31 December 1984 and in revised form 30 May 1985) 

A model problem is solved mathematically in order to clarify how an essential 
singularity, which is an integral part of the boundary-layer solution of a time- 
dependent convective-diffusive system, is removed by the inclusion of the effect of 
longitudinal diffusion. The model problem involves a uniform velocity field along a 
plane boundary at which boundary conditions of a mixed type are prescribed. The 
problem is solved by means of a method involving the Laplace transform and the 
Wiener-Hopf technique. An exact solution is presented. 

Special attention is given to an asymptotic solution that is valid for large values 
of the dimensionless time. It is shown that the large-time asymptote and the nai've 
boundary-layer solution are close approximations of one another, except in the 
neighbourhood of the location where the latter is singular. Around this point the 
present solution provides an interlayer which matches smoothly the purely time- 
dependent Rayleigh-like and the stationary components of the boundary-layer 
approximation. 

1. Introduction 
In convective-diffusive systems the influence of diffusion in the flow direction is 

usually excluded from consideration. The reason for this is that diffusion coefficients 
of the properties or species transported by the flowing medium are usually extremely 
small, so that even very low velocities are sufficient to render convection the 
dominant means of transport. Of course, the influence of diffusion cannot in general 
be disregarded in directions that are more or less normal to the flow, as the spreading 
out of the field is to be attributed to this effect. 

In his pioneering study on the dispersion of soluble matter in a fluid medium 
flowing through a tube, Taylor (1953) showed that the spreading out of an initial 
disturbance is due to the combined effects of axial convection and radial diffusion. 
It was found that axial dispersion was governed by an apparent diffusion coefficient 
much larger than the actual diffusion coefficient. This showed that axial diffusion, 
i.e. diffusion in the direction of the flow, is only a lower-order effect. Later studies 
by Aris (1956) and Lighthill (1966) provided further insight. The subject has 
prompted a great deal of mathematical study, the most recent contribution being 
a paper by Liron 6 Rubinstein (1984). 

Another field where time-dependent convective diffusion has led to a great deal 
of theoretical work is unsteady viscous boundary-layer flow. Here i t  is vorticity that 
is diffusing through and convected by the flowing medium. The literature in this area 
has now become quite prolific, and we refer to a paper by Riley (1975) and to the 
book by Telionis (1981) for comprehensive surveys. Here we shall restrict our 
attention to a line of research that was initiated by Stewartson (1951). He considered 
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the motion in a fluid caused by a suddenly started semi-infinite flat plate that  is 
subsequently moving in its own plane a t  a velocity U in a direction normal to  its 
edge. Stewartson approximated the full Navier-Stokes system by its boundary-layer 
analogue. I n  doing so he neglected the influence of longitudinal (along the plate) 
diffusion of vorticity. As a result, at any instant following the initial disturbance the 
influence of the leading-edge disturbance cannot have travelled further than what 
is allowed by the maximum velocity in the system, which is U. Therefore, the flow 
beyond the position x = Ut ( t  is the time), as measured from the leading edge, is 
unaware of this leading edge. The plate might as well have been infinite in all 
directions, and the flow is given by the simple Rayleigh solution, which is independent 
of the longitudinal coordinate. In  between the leading edge and the position x = Ut 
the influence of the leading-edge disturbance is noticeable and here the flow does 
depend upon the longitudinal coordinate. When time tends to infinity the flow field 
approaches that described by Blasius. 

Stewartson was particularly interested in what happens in the neighbourhood of 
the moving point x = Ut to see how the two solutions matched. In a later study (1973) 
he showed that the matching of the flows in the two regions requires the introduction 
of a many-layered flow structure around x = Ut. The review paper by Riley (1975) 
gives a graphic presentation of the pertinent flow field. Dennis (1972) approached the 
problem by numerical means and found good agreement between his results and those 
of Stewartson. An important conclusion of Stewartson’s research is that  the 
boundary-layer solution is dominated by an essential singularity in the neighbourhood 
of x = ut. 

As we stipulated earlier, the above-mentioned research was carried out within the 
bounds set by boundary-layer theory. One might wonder how the inclusion of 
longitudinal diffusion would alter the flow. Clearly, if the boundary-layer approxim- 
ations are relevant, the overall picture will not change a great deal. However, there 
is reason to  believe that some of the more extreme properties of the boundary-layer 
solution, particularly the essential singularity near x = Ut, might be alleviated to 
some extent. Indeed, the full system is elliptic as far as all spatial coordinates are 
concerned, and parabolic in its relation to  time. Such systems are known to smooth 
out any irregularities that  might exist a t  a given instant of time. The occurrence of 
permanent essential singularities anywhere in the field is not expected. Smith (1970) 
made similar comments. However, since then this aspect of the problem does not seem 
to have attracted suecient attention. 

Considering the great complexity of the work reported in Stewartson’s papers, we 
do not think it is feasible yet to investigate the influence of longitudinal diffusion in 
the problem considered by him. However, we might set ourselves a simpler goal by 
first attacking less complicated problems that still possess most of the characteristics 
of the original, the most important of these being the singularity inherent in the 
boundary-layer approximation. Once the role played by longitudinal diffusion in 
removing this singularity has been fully understood in these simpler examples, we 
may hope to  be able to  tackle the more complicated problem with some measure of 
success. 

2. The model problem and its boundary-layer analogue 
Let us consider the region - m < x < m, y > 0 as defined in the Cartesian 

coordinate system (x, y). The region moves as a solid body in the direction of positive 
x, with velocity U. In  this region we shall consider diffusion of some quantity, for 
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instance heat or a dissolved species, whose intensity (concentration) is given by c. 
The diffusion field 'is created owing to boundary conditions prescribed a t  the 
stationary boundary y = 0. 

At an initial time t = 0 the value of c is equal to zero everywhere. A t  any subsequent 
time the value of c is equal to co $: 0 on that part of the boundary y = 0 for which 
x > 0. The remaining part of the boundary y = 0 remains passive at  all times. 
Denoting the diffusion coefficient of the quantity c by D ,  we introduce a characteristic 
length and a characteristic time: 

Introducing dimensionless coordinates with the aid of (1) and rendering c dimensionless 
by means of the reference concentration co, we may define the problem in mathematical 
terms as follows: 

ac ac a2c a2c -+-=-+- ( - o o < x < m ,  y>O), at ax ax2 ay2 

c = O  a t  t = O  ( - - o ~ < x < c ~ , y > O ) ,  (3) 

p o  ( y = O ,  X<O), 
t > O  

(4) 

I c =  1 ( y = O ,  x > O ) .  (5 )  

Moreover c+O if x + - m  or y + m  (6) 

and 
ac 
ax 
-+0 if x + c o  (7) 

For reasons of simplicity we use the original symbols for the dimensionless quantities. 
An Oseen-like system such as the one presented above was considered by Carrier 
(1959),-f who used the problem as an example to illustrate a'method for obtaining 
approximate solutions in Wiener-Hopf problems. The complete solution to the 
problem was not presented in that paper, but the approximate results revealed many 
of the properties that we shall bring out in more detail here. 

Before we solve this problem, i t  will be instructive to study first its boundary-layer 
analogue. The term a2c/i3x2 is then omitted from (2). Since the governing equation 
is now parabolic in both t and x, the solution remains c = 0 in the region where both 
x < 0 and y > 0. Consequently, condition (4) should be replaced by c = 0 at x = 0 
(y > 0). The solution can easily be obtained by the application of the Laplace 
transform with respect to both t and x .  Using another method, Stewartson (1951) 
obtained the result 

\erfc(&) if ~ < x  < t ,  

From the definition of c as given by (8) and (9) it is clear that all along the moving 
line x = t the solution displays an essential singularity. Indeed, although c itself is 

t This reference was brought to the author's attention by the editor only after the first version 
of the paper had been submitted. 
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continuous at  x = t ,  all the higher derivatives are discontinuous and it does not seem 
possible to obtain the solution for x > t from that defined for x < t by means of 
analytic continuation. As was remarked by Riley (1975), the absence of longitudinal 
diffusion leads to a hyperbolic character of the governing equation for the combined 
coordinates x and t. Any discontinuities in the field give rise to waves in the 
(x, t)-continuum which travel at  finite speed. The wavefronts constitute natural 
boundaries that separate entirely different solutions. 

It is the purpose of this paper to show how the inclusion of the longitudinal-diffusion 
term in (2) will eliminate this singular behaviour. Indeed, the hyperbolic character 
of the boundary-layer analogue in the (2, t)-continuum is then replaced by a parabolic 
one. It was again Riley (1975) who remarked that now all points in the field are 
instantly aware of the presence of any discontinuities that may arise at any particular 
moment. In other words, if at a given time the c-field is described by an analytic 
function throughout, a discontinuity applied somewhere in the field at that instant 
will cause a contribution to the existing field which is again analytic everywhere 
during all subsequent times. Owing to the linearity of the present system, the two 
solutions may merely be added to obtain the full solution. In nonlinear cases an 
intricate interplay will develop between the existing field and the new contribution, 
but there is no reason to expect the result to be anything but analytic everywhere. 

For reasons of completeness we have to dwell a moment on the question of whether 
or not it is at all realistic to consider a boundary-layer analogue of the system (2)-(7). 
Indeed, as the system is presented it would seem that there are no small parameters 
in the problem definition. However, this is merely a matter of appearances. From 
(9) it is clear that dropping the longitudinal-diffusion term is obviously correct in 
the region 2 > t .  It is also justified to do so in the region x < t if I Cl2c/ax2 1 6 I a2c/ay2 I 
there. Applying this boundary-layer prerequisite to (8), we find that the condition 

y $ x  (10) 

must be satisfied in the region considered. Moreover, since the erfc function decays 
exponentially, when its argument assumes higher and higher values, we require that 

y = O(d). (11) 

x+ 1. (12) 

This condition together with that of (10) leads to 

Now we must remember that x, as it is used in (12), is dimensionless. Referring to 
(1) we conclude that (12) implies that the boundary layer is a good approximation 
at  distances from the leading edge that are much larger than 1, except in the 
neighbourhood of the singularity at x = t .  

To conclude this section we remark that the full solution to the system (2)-(7) is 
readily obtained when t = co. The solution becomes stationary. It is most esaily 
derived by means of parabolic coordinates, as the problem becomes separable. The 
solution is 

c = erfc 9 

the correctness of which can easily be checked by substitution in the system (2)-(7). 
When (10) and (12) are valid, (13) is seen to approximate (8). 

It is far more difficult to obtain the solution to the full problem when t is finite. 
This will be the subject of the next sections. 
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3. The full problem 
Upon the application of the Laplace transform 

rco 
E = J e-st c(z, y, t )  dt 

0 

to the system of equations and boundary conditions (2)-(7) and the subsequent 
introduction of 

(15) 8(z, y, s) = e-iZZ(z, y, s), 

we obtain the following set of equations and boundary conditions : 

0 a t  y = O  ( z < O ) ,  
ae 
a Y  
-= 

(18) 

t9+0 if x+-00 or y+00 or z+00. (19) 

Strictly speaking the condition for x+ - 00 does not follow directly from the original 
problem formulation, because of the transformation (15). Its validity has to be 
checked aposteriori. However, (13) offers a strong indication of its correctness. Indeed, 
if z+ - 00, (13) shows that c - erfc (1x1). If this behaviour is substituted in (15) it  
follows that t9 tends to zero in an exponential fashion when x+ - 00 and t + co. 

The mixed boundary-value problem defined by (16)-( 19) can be solved by means 
of the Wiener-Hopf technique (Noble 1958; Carrier 1959). To that end we introduce 
the auxiliary functions g(z) and h(z)  as follows: 

1 
8 =-e-i2 at y = o (x> O ) ,  

5 

0 if z < 0, 

- (z ,O,s)  if x > 0, 
(20) 

{ O(z,O,s) if z < 0, 
h(z,s)  = 

0 if z > 0. 

The Fourier transform is now brought into play and we define 
00 

6 ( w ,  y, S) = eiWZ O(z, y, s) dz = F2,(t9) I, 
co 

together with G+(w, S) = j-, eiWZ g dz = I,” eiwZ 9 dx (23) 

24) 
00 0 

and H - ( @ ,  S) = [ eioZh dz = [ eiwzh dz. 
J-a, J-w 

The significance of the plus and minus subscripts in the description of G, and H- is 
obvious: a plus function is analytic in an upper half-plane Im (0) > 71 and a minus 
function is analytic in a lower half-plane I m  (w) < T ~ ,  where T~ and T~ are real numbers. 
The Wiener-Hopf (W-H) technique will work if T~ is not smaller, and preferably 
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larger, than r1 so that the respective planes of validity overlap. With the W-H 
technique the usual procedure is to  assume such an  overlap region to exist beforehand 
and then to justify this assumption a posteriori. However, i t  may easily be made clear 
why an overlap region should indeed exist here. Owing to the transformation (15) 
the function 0 decays as exp (-4.) when x+ 00. Since, for finite t ,  the solution for 
c is given approximately by (9), we also have from (15) that ae/ay decays as exp ( -+) 
when z+ co. From the definition of g given by (20) this implies, together with (23), 
that  G, is analytic in Im ( w )  > -4, i.e. r1 = -f. Since h, as defined by (21), is finite, 
we find that H- is analytic a t  least in the region Im ( w )  < 0, so that r2 is not smaller 
than 0, proving that there is indeed a non-vanishing strip r1 < Im ( w )  < r2 where both 
G, and H- are analytic. Upon completion of the analysis we can even prove that 

We shall now assume for the moment that s is real and positive. Although it is true 
that this parameter may assume complex values, this condition does not restrict the 
validity of the final solution. On the contrary, once we have proved that a certain 
solution is valid on a continuous range of s-values restricted to a line, analytic 
continuation can be invoked to  render that same solution valid for all complex values 
of s, except possibly at isolated singular points. 

7 
2 2 '  

When (22)-(24) are applied to (16)-(19) we find 

as 1 
- (w ,  0, S) = G+, 
a Y  

8 ( w ,  0,s) = H- +- 
s(w +ii) ' 

9+0 if y + m .  

The general solution satisfying (25) and (27) is 

(27) 

8 = A ( w , s )  exp[-y(w2+s+f):]. (28) 

At this point it is necessary to define exactly the function (wz  + s + $)! in the complex 
w-plane. This function has two zeros, a t  w = -i(s+f)! and a t  w = i(s+f)!, which are 
both on the imaginary axis, since s is real. The w-plane is now assumed to be cut along 
the imaginary axis from i(s+$ to ico and from -i(s+$ to -im. The particular 
branch of the function (w2 + s + f): is selected by the following conditions : 

-in < arg[w-i(s+f)t] <in, (29) 

-in < arg[w+i(s++)!] <in. (30) 

These definitions ensure that Re (w2 + s +a): > 0 outside the cuts, so that the function 
given by (28) has indeed the behaviour prescribed by (27). 

If we demand that (28) shall satisfy the two conditions of (26) we find 

G, = - A ( w 2 + s + f ) ! ,  (31) 

1 
A = H - + -  

s(w + ii) ' 

Eliminating the function A we obtain a functional equation for G+ and H- : 

1 +H-+-=O. G, 
(w2 + S + f): s(w +ii) 

(33) 
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To determine the functions G, and H -  from (33) we have to factorize this equation 
in true plus and minus functions. In our case this is quite simple and can be done 
by inspection. Thus we write 

effi[++ (s+fft 
s(w +ti) 

1 I +  
G+ 

[w + i(s ++),I, 

The left side of this equation is analytic in the half-plane Im (0) > -f and the right 
side is analytic in a half-plane that covers at least Im(w) < 0. This shows that the 
two functions, the one on the left side and the one on the right side, are representations 
of the same entire function. It is well known (Noble 1958) that this function may 
be determined from the asymptotic behaviour of the two functions when w + 00. 

Turning first to the left side of (34) we conclude that we must know the behaviour 
of G+ when o+m in the upper half-plane. This behaviour depends upon that of 
aB/ay(z, 0,s) when 240, as can be seen from (20) and (23). If this behaviour is O(x-:), 
which we shall verify a posteriori, we find G, = O( I w 1-4) when w + 00. This shows that 
the left side of (34) tends to zero when w+ 00 in the upper half-plane. Assuming next 
that h ( z )  tends to unity when xtO, which is the same as requiring continuity of c 
at x = 0, we find that H-(w) = O(lw1-l) when w+00 in the lower half-plane. Thus 
both the left and the right sides of (34) are zero at infinity. Then Liouville's theorem 
demands that the entire function shall be equal to zero everywhere. Thus 

1 [w + i(s ++$It 
s (w+ii) ' 

G+ = -- eini [++ ( s + + ) z ] z  (35) 

4. The solution to the full problem 

the solution to the problem defined by (2)-(7). From (22) and (27) we have 
In this section we shall carry out the requisite inverse transformations to determine 

O(z, y, s) = S,&(S) = e-i0s8(o, y, s) d w  

The path of integration covers the real axis. To carry out the integration in (38) it 
is advisable to make use of the special definition of the root function that we presented 
in the paragraph that includes (29) and (30). If x is positive, the integrand in (38) 
vanishes when Im(w) tends to minus infinity. That is why we consider a contour 
consisting of the interval ( -  R, R) on the real axis and a semicircle in the lower 
half-plane interrupted by a loop around the cut on the imaginary axis. Within this 
contour the integrand of (38) has one pole, viz the one at w = -ti, whence we have 

, (39) 
exp [ - iox - y(w2 + s +:$I exp [ - +z - ysi + $i] 

dw= - 2 ~  
[++ (8+$1: 
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where the contour is understood to have been traversed in the negative (clockwise) 
direction. When R tends to infinity, the contribution from the semicircle tends to zero 
so that we are left with contributions from the path along both sides of the cut and 
a contribution from the real axis, which is the actual integral of (38). The result is 

exp [ - $x - yB1- [$ + (s + $14 e =  
S 7tS 

At this stage it appears that the analysis is simplified if we consider 

where cis defined by (15). The integral appearing in (41) can be solved (Oberhettinger 
& Badii 1973, formula 17.95) and we have 

When x is negative, the integrand of (38) vanishes as Im(u) tends to positive 
infinity. In  that case a contour has to be selected in the upper half of the complex 
plane, with a suitable loop around the cut. Now there is no singularity within the 
contour, but it can be shown that the analysis leads to the same result as before. Thus 
(42) represents the solution for all x and y. 

In the same fashion we can derive the inverse Fourier transforms of the functions 
G+ and H -  which are given by (35) and (36). These results are 

9 (43) 
I++ (s+$$ exp{-x[(s++$-$l) - erf(xi[(s+a):-~]t) 

7c:x:s Si 

A t  this stage in the analysis it may be worthwhile to check some of the properties 
of the solution as we have derived it so far to see whether they conform to some of 
our earlier assumptions. First, it is seen that (ai5/lay)ll-o has the required singular 
behaviour when x J. 0. To determine the original function c we have to write 

where y is a positive real number. Therefore Re (s+$ > f and aa//ax is seen to vanish 
when either y+ 00 or z++_ 00. This justifies our remarks following (19). Next, we carry 
out the integration 
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where we have used a suitable change of integration variable. When x tends to 
infinity, the lower bound tends to zero, and we have 

The Laplace inverse of (47) is easily found to be 

X+CC 
(49) 

showing that the solution approaches the Rayleigh solution (49), as it should. It 
should also be noted that the lower bound of the integral in (46) is equal to zero when 
y = 0 , x  being positive. The value of c" is then easily shown to be l/s, whence c = 1, 
the prescribed boundary condition. Finally, when x is negative, it follows from (46) 
that E is a symmetric function of y so that &?/lay = 0 when y = 0, x being negative. 
Thus the solution seems to have the expected behaviour in all respects. 

The final step in the solution is to find the Laplace inverse of the function defined 
by (46). Using the result (A 66) of the Appendix we obtain 

It is possible to reduce this expression from a double to a single integral. Since (A 66) 
and (A 15) of the Appendix represent the same function, the inner integral appearing 
in (50) may be written as the sum of an integrated part and an integral that may 
be reduced by partial integration. The final result is 

where the function xi is defined by (A 13) of the Appendix. Although this expression 
seems rather formidable, it offers certain advantages. First, the numerical evaluation 
will be much quicker than that of (50), since the functions that constitute the 
integrand can all be obtained by means of efficient subroutines. A double integral 
can rarely be calculated with the same efficiency. 

A second advantage of (51) is that it reveals some important aspects of the structure 
of the solution c. Indeed, if we keep the spatial coordinates x and y fixed, and let 
t tend to infinity, the second integral tends to zero in an exponential fashion. This 
can easily be understood as follows. In  the domain of integration, which is fixed, the 
function exp ( - (a2 + y2/4q2 - t)2/4t) can be made exponentially small on any finite 
range that includes the lower bound by letting t become larger and larger. However, 
outside any finite range the remaining part of the integrand is exponentially small. 
As it remains finite, the function I?$ does not play a role of importance in this 

6 Y L M  165 
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qualitative analysis. For extremely large values oft, the argument of If: as it appears 
in the first integral can be simplified by the application of the asymptotic formula 

I . r , (W)  - 2-:R+iw-f[1 +O(w-l)] ( W - t c o ) ,  (52) 

where we have used the asymptotic expansion of Ki valid for large values of the 
argument (Abramowitz & Stegun 1965, formula 9.7.2). Therefore 

so that c tends to the solution as given by (13), when t tends to  infinity, at every 
fixed point in space. 

This state of affairs is changed when t and y are held fixed and x is made to approach 
infinity. Then, the first integral tends to zero and the solution becomes a function 
of y and t :  

c = 1 R(2t)i I," (f e+ + (5- 1) q erfc (q)) (q2+$+ t)' 

x exp [A (f ( q2 +$+ t>' - ( q2 + $- t>' )] [k ( q2 + 6 + t y ]  dq = erfc (5). 
(54) 

The last identity is borne out by (49). However, i t  would seem a formidable task to 
prove the second identity of (54) directly, without having any knowledge of the 
analysis that led from (46) to (51). To be certain, we checked the identity numerically 
and full agreement was established. 

The changeover between the two regimes occurs when (x2  + y2): N t .  The nature of 
the solution in this region will be studied in the next section. 

5. The large-time asymptote 
In this section we shall clarify some aspects of 'the problem sketched in the 

introduction, viz the singular matching of the Rayleigh-like and the almost-steady 
regimes of boundary-layer approximations to time-dependent convective-diffusive 
systems. As is shown by (12), the notion of a boundary layer is only meaningful if 
x % 1. Since the two regimes are separated at x = t ,  we are also required to assume 
t % 1. To investigate the large-time asymptote we shall start from (42). From this 
equation and (A 1) we have 

When t is much larger than unity we may use the asymptotic expression (A 10) to 
obtain 
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where 
( t  + (x2  + y2)i)i 

2t 
Q =  (57)  

The term within square brackets is bounded for all values of x and y ,  and is dominated 
by the erfc function. Keeping y fixed and letting x vary from - a to + a we see 
that the erfc function is at first exponentially small. When x approaches the 
neighbourhood of - t ,  this function rapidly rises to a value that approximates unity, 
since erfc ( - a) = 2.  It remains at this level until x is around + t ,  beyond which it 
drops quite rapidly to exponentially small values. The exponential function outside 
the square brackets behaves somewhat differently. It is again exponentially small 
when x + -  a, its value changes to order unity when x becomes of order unity, and 
it retains that value as x+ a. This shows that 

if x 4 t .  When (58)  is integrated, assuming that c+O when x + - a ,  we obtain 

c - erfc [((x2+ y2)1-x)i/2i] +exponentially small terms ( -  00 < x << t ) .  (59) 

As soon as the value of x approaches that oft, the rapid change of the term within 
square brackets in (56)  has to be accounted for. To that end we introduce the variables 
6 and 7 as follows: 

x = t + 2ti6, y = 2ti7. (60) 

If this transformation is substituted in ( 5 6 ) ,  assuming 6 and 7 fixed and t+  a, we 
have 

1 1 +I exp [ - (6 + . . . ) 2 ]  { 1 - - (t + . . . ))I, (61)  (W 4 d t  

where the dots stand for terms of higher order in t .  Working out the expansion we 
find 

The asymptotic solution in the transition region defined by the coordinates 6 and 7 
may be found by an integration of ( 6 2 )  with respect to 6. As 6 increases, this solution 
should approach (49). Therefore 

1 
erfc (6)  + xn (y2 -%) 6 e-P} + O(4). 7 2  (63)  d t  2 

When 6+ co this function tends rapidly to erfc (7). On the other hand, when &+- 00, 

c tends to 
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0.05 

-0.05 Exact solution (51) 

-0.15 

-0.20 

FIGURE 1.  The behaviour of the boundary-layer solution and the exact solution in the neighbourhood 
of x = t .  The curves presented are related to the mass-transfer function &lay evaluated at 
y = 0 (5 2 0). The dimensionless time t has been taken equal to 100. 

It should be kept in mind that we are still considering values of x that are O(t ) .  
Thus, we have from (60) that  161 4 ti. However, the exponential and the erfc function 
in (63) approach their asymptotic values so rapidly that the limit 161 + 00 and the 
condition 161 Q t i ,  although seemingly mutually exclusive, can be applied simul- 
taneously at the cost of exponentially small errors. 

When [+- 00, the transition solution (63) should be in agreement with (59). If we 
substitute (60) in (59) and expand for t+  00 we find 

c - erfc [q(l-[t-i + !j(3t2 -i,-2) t- l  +i6;77(y2 - t2) t-i + O(t-2)) ]  

- erfc (7) + - 7 e-q* 26 + (r2 - 3E2 + 2E2q2) t-: 

(65) 

( 7 4 2  i [  

+{6( -572+274)+[3 (5 -~2+$4)}  t-'+O(t-:)], 

showing that there is a smooth matching between the stationary solution (59) and 
the transition solution (63) up to the order considered (see (64)). 

Since the structure of the large-time asymptote is a combination of the two sepa- 
rate solutions (59) and (63) i t  must be possible to derive it by means of the method 
of matched asymptotic expansions (Kevorkian & Cole 1981), which proceeds 
directly from the governing equations. It would be appropriate to  study this method 
here, so that  we may get an insight into its possibilities and limitations when applied 



Influence of longitudinal diffusion in convective-diffusive systems 159 

to problems of the present kind. This is particularly useful when i t  is impossible to solve 
such problems exactly. Thus we are fortunate in having an exact solution here, so 
that we may check the practicability of the method. 

As the application of the method of matched asymptotic expansions appears here 
to be straightforward, we shall not present the details of the derivation. In  summary, 
the governing equation and boundary conditions have to  be rewritten in terms of the 
variables 5 and 7 defined by (60) and then the asymptotic series may be substituted: 

n-1 

When matching is restricted to those parts of the asymptotic behaviours that are 
of algebraic order, the expansion (66) will contain arbitrary constants from the term 
cg onwards. It is possible that this indeterminacy will disappear when matching is 
extended to  terms that are of exponentially small order. 

To conclude this section we present a graph which shows how the singular 
behaviour of the boundary-layer solution at x = t is modified by the influence of 
longitudinal diffusion. In  figure 1 we show the function 

which is related to  surface mass transfer. The exact solution is seen to display a smooth 
picture, in contrast to  the boundary-layer result. 

6. The small-time solution 
Although not as interesting as the large-time asymptote, the small-time solution 

will be briefly discussed here to show a connection with some related work. We may 
derive the small-time solution by an evaluation of the functions (42)-(44) for large 
values of s. Restricting ourselves to (43) we have for s+ 00 

This function appeared also in a problem on etching that was recently considered by 
the present author (Kuiken 1984), which involved the two-dimensional diffusion 
equation, i.e. the present equation (2) with the convection term &/ax omitted. This 
serves to show that diffusion completely dominates convection in the very first stages 
of the process. 

7. Concluding remarks 
By presenting a fairly complete analysis of a model problem, we have succeeded 

in showing how the inclusion of longitudinal diffusion in a time-dependent convective- 
diffusive context is instrumental in removing a singularity inherent in the cor- 
responding boundary-layer formulation. The singularity scparates a purely time- 
dependent field, where the limited extent of the pertinent bounding plane has not 
let itself be felt, from a stationary field which responds instantaneously to  the finite 
extent of this same boundary. It is important to  notice that i t  is not this stationary 
boundary-layer solution (8), but rather a corresponding solution (13) of the complete 
stationary equation, that plays a role in the analysis that led to  the removal of the 
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singularity. This means that longitudinal difhsion is important not only in the 
immediate neighbourhood of the singularity at x = t : its compounded history from 
z = - 00 up to x = t is involved in the process. 

The knowledge acquired through the study of the present problem may be used 
to tackle more complicated problems of a related nature. The first of these would seem 
to be that which involves a less trivial, i.e. a non-uniform, flow field. This obvious 
choice will be a velocity field with uniform shear and zero speed at the boundary. 
This would considerably complicate the nature of the boundary-layer singularity, but 
its solution would also shed more light on the problem that will have to be attacked 
eventually, namely Stewartson's (1951, 1973). 

Appendix 

function 
I n  this Appendix we shall derive the original F(t, a) of the Laplace-transformed 

(a 2 0). (A 1 )  
[(s ++I?+ :If exp [- a(s +i)i] 

s f ( s ,  a) = Yt4 ( m a ) )  = 

We shall also derive an asymptotic representation of the original that  applies for large 
values of t .  

From formula I1 3.16 of Oberhettinger & Badii (1973) we have 

Next we obtain from (A 3) and formula I1 1.27 of Oberhettinger & Badii 

Since the function f ( s ,  a) may be written 

f ( s , a )  = ((s+$++)-i ((s+$-+)-l exp [-a(s+:)i], (A 5) 

we may finally deduce from (A l ) ,  (A 4) and (A 5 )  

It is straightforward to derive an asymptotic expression for F(t, a) that  is valid in 
the limit t + co. First, we write 

where 
(a - t)2 t-a 

Il(t,a) = exp[ -,] jOm (q+a) oxp[ -'+-q] 4t 2t erfc(q4) dq. (A 8) 
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Since a 2 0, the integrand of (A 8) decreases at least as fast as & e-iQ when q +  ao, 
even when t = 03. This is why the first of the two exponential functions appearing 
in the integrand may be expanded for large values of t, i.e. 

(a-t), t-a 
1, (t ,a) - exp [ - 7 1  JOm (q + a) ( 1 - $ + . . .) exp [ 7 q] erfc (h) dq 

+ O ( ; ) ]  (t+m). (A9) 

Combining (A 6)-(A 9) we obtain 
r 

To conclude this Appendix we shall derive a representation of the function F(t, a) 
that is more suitable for certain purposes. Let us consider the integral I(t ,  a) defined 
by (A 7). By writing the term q+a as (q+a- t )+ t  we may represent I as the sum 
of two integrals. The first can be reduced by partial integration and we find 

where we have used (Gradshteyn & Ryzhik 1965) 

exp [ -g - 4 7  dq = 2-tlf: 6). I." 
Here is a shorthand notation for the function 

Ki(*) = (*)i  e(')Ki(*), 

where Ki is a modified Bessel function. 

Taking the derivative with respect to a we have 
The integral occurring in (A ll),  which we denote by I,(t ,  a), will be reduced next. 

Since a 3 0, the last integral is given by (A 12). As I, tends to zero when a tends 
to infinity, we may obtain I, by a simple integration of (A 14) from a to infinity. If 
the result is substituted in (A 6b) we have, finally, 

1 2 '  (a - t)2 F(t,a) = - 7 C t  ( - )' e-'a * { e x p [ - T ] ~ ( y )  
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